
DANCERS: A Physics and Network Co-Simulator
for Communicating Multi-Robot Systems

Théotime Balaguer∗†‡, Olivier Simonin∗, Isabelle Guérin Lassous†, Isabelle Fantoni‡
∗INSA Lyon, Inria, CITI, UMR 3720, Villeurbanne, FRANCE

Email: theotime.balaguer@insa-lyon.fr
†Université Claude Bernard Lyon 1, ENS Lyon, CNRS, LIP, UMR 5668, Lyon, FRANCE
‡Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes, FRANCE

Abstract—Multi-robot systems equipped with wireless commu-
nication devices can outperform single-robot platforms through
cooperation. However, such wireless network face challenges such
as the unreliable wireless channels, physical obstacles, uneven
terrains, and potential malicious attacks. Studying the interplay
between the physical and network aspects of these systems
proves challenging because existing physics simulators often
lack realistic communication models, while network simulators
typically use over-simplified physics and mobility models. To
address this gap, we introduce DANCERS, a novel co-simulation
platform providing synchronization and information exchange
between any robotic and any network simulator. DANCERS
is evaluated in terms of computational performance, overhead
and correctness, and its capabilities are demonstrated through a
multi-robot use case.

Index Terms—Co-simulation, Multi-robot Systems, Network
Simulation, Simulators Synchronization.

I. INTRODUCTION

Cooperative Multi-Robot Systems (MRS) offer new oppor-
tunities for civil or military missions such as environment
surveillance, search-and-rescue or communication networks
[1]. In many situations, such systems outperform single-robot
platforms by bringing speed, robustness and scaling, thanks to
the maturation of artificial intelligence, embedded computing
and IoT network [2].

To form a robotic network, the robots involved in a co-
operative MRS must be able to interact with each other,
either with perception only, such as visual detection, or more
frequently with radio-wave communication. Different informa-
tion can be exchanged on the network, ranging from simple
robot positions to heavy video streams and serving different
purposes such as navigating in a complex environment while
transmitting a video stream to an operator.

In the context of cooperative MRS, wireless network and
robotic control are both part of the same complex system,
and should be studied together [1]. Simulation plays a major
role in the development of cooperative MRS to enable fast,
reproducible, safe and inexpensive studies, and would greatly
benefit from joint robotic and network simulation. Both the
robotics and network communities have used simulation for
decades and the simulators of each field are now numerous,

This work was jointly funded by the ”Agence de l’Innovation de Défense”
(AID) and ”Institut National des Sciences Appliquées” (INSA Lyon), and
realized within the context of the CONCERTO project (ANR-20-ASTR-0003).

well developed and refined [3] [4]. However, physics simula-
tors tend to ignore networking issues while network simulators
offer limited or unrealistic models of the physical world.
This assessment naturally brings the idea of co-simulation —
merging two simulators in a single program — to get the best
of both worlds.

Several challenges arise from co-simulation, such as time
synchronization, information sharing and support for Software-
in-the-loop (SITL). SITL is the ability to test and validate
the real robotic software in the simulation, which facilitates
the transfer from simulation to real-life experimentation. In
modern robotics, this implies support for commonly used
autopilots and for the Robotic Operating System (ROS). ROS
is a middleware commonly used in robotics, with two major
versions that will be referred as ROS1 and ROS2 in the
remainder of this article. ROS1 will reach end-of-life in May
2025, leaving all development efforts to ROS2.

Our study of existing physics and network co-simulators
showed that they were difficult to use out-of-the-box. Indeed,
maintenance is a challenge in the rapidly evolving world of
robotics, creating compatibility issues between existing co-
simulators and state-of-the-art tools. Up-to-date documentation
is not always available, hindering the use of existing co-
simulators. Hoping to fill a gap, we introduce DANCERS
which stands for Distributed, Autonomous, Networked and
CooperativE Robots Simulator, available under open-source
licensing [5]. DANCERS is not tied to a single physics or
network simulator and we provide the connectors for three
physics simulators and one network simulator (ns-3 [6]). We
evaluate this co-simulator against computational performance,
overhead and correctness, and show a case study with a Flying
Ad-hoc Network (FANET) to illustrate DANCERS’ potential.

In this paper we will first present in Section II the existing
work on joint physics and network simulation. In Section III
we introduce our co-simulation architecture called DANCERS
and present available connectors for simulators and the virtu-
alization mode in Section IV. The co-simulator’s properties
are evaluated in Section V. Section VI presents a case study
example showing the capabilities of DANCERS. Finally, we
conclude in Section VII.



II. RELATED WORK ON (CO-)SIMULATORS

MRS researchers studied the joint simulation of physics and
network for about a decade. A selection of the most influential
simulation tools is presented hereafter.

ARGoS [7] is a simulator specifically designed for MRS.
Among other innovations, ARGoS natively simulate inter-
agent communication, making it a solid option for the joint
study of robotics and networking. However, its communication
models are far from the networking community standards
(e.g. radio model with fixed communication range, routing
algorithms not simulated). Because network simulation brings
great complexity, co-simulation has emerged as a preferred
approach to incorporate state-of-the-art simulators such as ns-
3 [6] (described in Subsection IV-A1).

RoboNetSim [8] is one of the oldest co-simulation tool.
It integrates one of the two physics simulator ARGoS [7] or
Player/Stage [9] with either ns-2 or ns-3. Specifically designed
for large swarms, it can handle hundreds of robots. Now a
decades old, RoboNetSim principles and implementation are
still relevant, but it uses very old software and its adaptation to
recent robotic software such as Gazebo [10] or ROS2 would
be far from trivial. Despite these limitations, RoboNetSim was
of great inspiration. Their use of sockets for inter-simulator
communication and their evaluation method for a co-simulator
were the basis of the current work.

CORNET [11] and CORNET 2.0 [12] interconnect Gazebo
[10] and ns-3 [6]. It is recent, open-source and main-
tained. However, it uses an unidirectional time synchronization
scheme that holds the strong assumption that the network
simulator always runs faster than the physics simulator. This
assumption does not hold for all scenarios, as it is shown in [8]
and in the present work in Fig. 5. Furthermore, documentation
is missing for CORNET, making it hard to apprehend.

ROS-NetSim [13] is a coordination framework based on
ROS1 that merges any physics and network simulators. It
uses a time-stepped synchronization approach and leverages
the Protobuf 1 library for information exchange. The network
simulator used in the examples, ”WINTERSim”, is no longer
available. ROS-NetSim inspired the present work, specifically
for the message format and processing.

FlyNetSim [14] focuses on SITL simulation, where the
software of the robot is directly tested in simulation. It enables
time and position synchronization between multiple instances
of the ”Ardupilot”2 SITL software and ns-3. FlyNetSim cannot
run faster than real time and lacks a full physics engine, as it
only uses the dynamic models included in the Ardupilot SITL.
FlyNetSim provided guidance in the development of our robot
virtualization mode (see Subsection IV-B).

This list is not exhaustive, for a recent and complete list of
the existing co-simulators and their characteristics, the reader
can refer to the Table I. of [12].

1Protocol Buffer: https://protobuf.dev/
2https://ardupilot.org/

CoordinatorNetwork
connector

Physics
connector

Network
Simulator API

Physics
Simulator API

Socket Socket

+ +

Fig. 1: High-level architecture diagram of DANCERS

III. THE DANCERS ARCHITECTURE

DANCERS is a C++-written co-simulator designed to con-
nect any physics simulator with any network simulator, pro-
viding synchronization and information sharing. DANCERS
has three modules at its core: the Coordinator, the Physics
Connector and the Network Connector. This simple archi-
tecture is depicted in the Fig. 1. In this section, we explore
how DANCERS answers the synchronization and information
exchange challenges, and we give details on how obstacles are
managed.

A. Time synchronization

The co-simulation consists in a parallel execution of both
simulators, with a synchronization and data exchange process
occurring iteratively. Each iteration spans a fixed simulated
time period, typically tens of milliseconds, configured before
the simulation starts. Choosing the iteration duration is difficult
because physics and network simulators operate on different
time scales: physics simulators need iterations of 4–10 ms,
while network simulators require iterations of 1 ms or less.
On the physics simulation side, smaller time steps dramatically
increase computational costs while only marginally improving
accuracy, whereas larger time steps in network simulations
introduce undesirable delays in data exchange.

To overcome this issue, we introduce a ”decoupled time-
stepped” approach, shown in Fig. 2, which divides each
iteration (∆) into smaller steps specific to each simulator: δphy
and δnet. The relationship is given by:

∆ = Nphy ∗ δphy = Nnet ∗ δnet (1)

where Nphy, Nnet ∈ N are the number of steps per iteration for
the physics and network simulators, respectively.

Using two threads, the Coordinator oversees this process,
ensuring Nphy and Nnet steps are executed per iteration. A
step is triggered when a Connector receives a synchronization
message from the Coordinator (START). The Connector then
advances its simulation by δphy or δnet and signals the end
of the step by sending a synchronization message to the
Coordinator (END). Once both Connectors have completed
their required number of steps, a new iteration begins.

The operator configures ∆, δphy and δnet in the configuration
file, balancing accuracy and computational cost while respect-
ing the relationship in (1).

DANCERS also manages the global ROS2 clock by up-
dating it whenever the Connector with the smallest step size
completes a step. This clock allows the ROS2 nodes in the
physics simulator to synchronize with the co-simulator, with
a precision of min(δphy, δnet).

https://protobuf.dev/
https://ardupilot.org/


Network
Connector

Coordinator Physics
Connector

Thread 1 Thread 2

times

times

Shared barrier

Shared barrier

hold Computation time (net)

Computation time (phy)

Overhead

START message

END message

ROS2 Clock

Fig. 2: The synchronization scheme for the DANCERS co-
simulator

B. Information Exchange

The Coordinator and the Connectors exchange messages
with sockets. The choice of sockets over other inter-process
communication methods such as shared-memory or message
queues have been discussed in [8] and we share the au-
thors’ conclusions: sockets are extremely flexible, with a good
balance between efficiency and complexity of usage. The
modules of DANCERS can be executed on a single machine
(using Unix Domain Sockets, UDS) or distributed among in-
terconnected machines (using Transmission Control Protocol,
TCP). The Protobuf format is used to serialize and deserialize
the messages, that are compressed with the zip algorithm
before transmission. The only mandatory information that the
simulators must share is robots positions. It is left to the
operator to decide what other information should be shared,
depending on the simulated models.

Synchronization messages can be defined as follows:{
Mphy = (p, Pphy)

Mnet = (Pnet)
(2)

where p ∈ (R3)N is a vector containing the robots’ positions
for N robots, and Pphy, Pnet are operator-defined data. The
nature of the synchronization messages (START or END) is
implicitly defined by which module generated the message.

Exchanging messages between the different modules of the
co-simulator have a computational cost called the overhead,
which is highly correlated with the size of the synchronization
messages. It is therefore important to keep the size of the
operator-defined payloads as small as possible.

C. Simulating obstacles in DANCERS

In robotics, navigating in a complex environment filled with
obstacles is already a challenge, but obstacles also have a
significant effect on the quality of radio signals by blocking the
propagation in Non-Line-of-Sight (nLOS) situations, or creat-
ing interference due to multi-path. In DANCERS, obstacles are
defined in the configuration file and created at initialization

both in the physics and network simulators. This limits the
obstacles scene to remain static for the duration of the simu-
lation, but reduces the size of the synchronization messages.
Network simulators often offer less detailed environmental
representations compared to physics simulators, which may
impose further constraints on obstacles. As an example, ns-3
requires obstacles to be cuboid and oriented along the x, y,
and z axes.

IV. CONNECTORS FOR DIFFERENT SIMULATORS AND
VIRTUALIZATION MODE

There is a balance between realism and complexity in any
simulation. The level of realism must always be justified
by the scientific question at hand, to keep complexity as
low as possible [15]. It is therefore beneficial to have a
broad range of simulation capabilities for different purposes.
Besides, creating a Connector for a simulator requires a good
understanding of its internal functioning. To cover for multiple
levels of realism, we developed Connectors for three physics
simulators, presented hereafter. On the network side, we only
developed one Connector because ns-3 covers a broad range
of protocols and technologies while being computationally
efficient. DANCERS also supports SITL, which can be seen
as the most advanced level of simulation, by functioning in
“virtualization” mode.

A. Implemented Connectors

1) ns-3: ns-3 is a widely used network simulator supporting
various communication technologies (Wi-Fi, LoRa, UWB,
LTE, 5G, etc.) with high-fidelity protocol simulation across
the network stack. While not specialized for detailed physical
layer simulations, it offers advanced propagation models like
the 3GPP Vehicle-to-Vehicle Urban Propagation Model that
accounts for distance, obstacles, and shadowing — adequate
for most MRS simulations. Furthermore, ns-3 benefits from
an active community that ensures diverse, well-documented,
and rigorously tested modules, fostering trust among network
researchers.

2) Robotsim: Robotsim [16] is an open-source physics
simulator designed for studying UAV swarming. Chosen for
its speed, it can simulate hundreds of robots faster than real-
time, enabling the study of high-level multi-robot navigation
algorithms like flocking. Its low computational cost makes
Robotsim a good choice for machine learning models training
or evolutionary algorithms. Additionally, it aligns with our
team’s previous work [17] and is illustrated in Fig. 3 (left).

3) Mini-dancers: Mini-dancers is a multi-UAV simulator
built on ROS2 and the multi-rotor model developed by the
Czech Technical University’s MRS Group [18]. It uses Rviz2
for 3D visualization (illustrated in the middle of Fig. 3). While
obstacles can be visualized, collisions are not simulated.

Mini-dancers strikes a balance between Robotsim and
Gazebo: it scales to hundreds of UAVs with lower compu-
tational demands than Gazebo and offers modern features
compared to Robotsim. In DANCERS, it is ideal for studying
cooperative multi-UAV systems, when the scientific question



Fig. 3: Visual interface of the three physics simulators avail-
able for DANCERS, from the less complex (left) to the most
complex (right). On the left, Robotsim with 6 UAVs. In the
middle, Mini-dancers with 12 UAVs. On the right, Gazebo
with 4 UAVs (PX4Vision model) equipped with lidars.

does not require the simulation of autopilot software, realistic
sensors and collisions.

4) Gazebo: Gazebo [10] is a broadly adopted open-source
physics simulator for robotic systems. It supports various robot
types and environments, offering a rich library of sensors,
actuators, and a large user community. An example of UAVs
navigating a cluttered environment with simulated LIDARs is
shown in Fig. 3 (right).

In DANCERS, using Gazebo allows for realistic simulations
of both robotics and networking, closely approximating real-
world scenarios. However, it is usually paired with SITL
autopilots and simulated sensors, whose high computational
demands limit scalability to a few dozen robots per machine.

B. Network virtualization mode

The ability to test MRS innovations in a SITL manner —
using the same code (nodes and OS) as on the real robot, even
for the network stack — is highly valuable but rarely imple-
mented. It requires the OS-managed network stack of each
robot to be virtualized, enabling onboard nodes to exchange
information over a simulated network as if it was running
on real hardware. In this DANCERS mode, network virtual-
ization (specifically network namespaces (NNS), a standard
UNIX feature) replaces part of the network stack previously
simulated by the network simulator. The network stack is
thus virtualized for the network – IP – layer and higher,
and simulated for the link – MAC – and physical – PHY
– layers. The network architecture and layer responsibilities
are illustrated in Fig. 4.

When a robotic node sends a message, the virtualized
network stack processes the packet down to the IP layer.
Afterward, the network simulator computes radio transmis-
sion effects. If successful, the packet is converted back for
processing in the destination robot’s virtualized network stack,
and finally received by the destination node. Some simulation-
specific data has to be extracted from the robotic nodes (e.g.,
the motor rotation speed) without interfering with the inter-
robot communications. To separate these flows from simulated
communication, a dedicated interface routes this traffic out of
the NNS (veth 2 in Fig.4).

This mode of DANCERS requires the network simulator to
be able to get and return MAC layer packets from and to the

NNS 1

NNS 2

PH
Y 

la
ye

r

M
AC

 la
ye

r

Network
simulator

TA
P-

Br
id

ge

tra
ns

po
rt

la
ye

r

IP
 la

ye
r

PX4 Autopilot SITL

ROS2 node 1

ve
th

 2

ve
th

 1

PX4 Autopilot SITL

ROS2 node 1

ROS2 node 2

ve
th

 2

ve
th

 1

tra
ns

po
rt

la
ye

r

IP
 la

ye
r

Physics
simulator

TA
P-

Br
id

ge

M
AC

 la
ye

r

Simulated Virtualized

ROS2 node 2

Fig. 4: Network virtualization framework for DANCERS vir-
tualization mode

user-space of the OS. For example, this can be done using
ns-3’s TAP-Bridge module.

V. DANCERS CO-SIMULATOR EVALUATION

Following the method proposed in [8], DANCERS is eval-
uated with three key characteristics: computational perfor-
mance, overhead and correctness. We chose a standard MRS
scenario to run the evaluation, described in details in Sec.
VI, where a fleet of collaborative UAVs is tasked to navigate
autonomously across an environment with obstacles using a
distributed flocking algorithm [17]. The simulations were run
on a laptop computer with the following characteristics: Intel
Core i7-12700H CPU (20 cores), NVIDIA RTX A2000 (8GB)
Laptop GPU, 32GB DDR5 4800MHz RAM, and Ubuntu 22.04
LTS (64-bit) OS.

A. Computational performance

Computational performance is one of the most important
features of any simulator. We evaluate it with the simulation-
time factor (STF), the ratio between the computation time
(wall clock) and the simulated time:

STF =
T∆

∆
(3)

where T∆ is the computation time for one iteration and ∆ is
the length of one iteration. The STF can be calculated for any
module, for example, the STF of the physics simulator would
be T∆

phy/∆ where T∆
phy is the computation time of the physics

simulator.
Fig. 5 shows the STF of the two simulators and the entire

co-simulation against the number of simulated robots. It shows
values for the Robotsim variation (left), the Mini-dancers
variation (center) and the Gazebo variation (right). The values
are averaged on the entire scenario phase (100 s). The first
important fact to notice is that the three variations of the
co-simulator run faster than real-time when the number of
robots is below 20 robots approximately. We can clearly see
the efficiency of Robotsim to simulate large groups of robots,
keeping a low computational footprint even with 64 robots.
The Robotsim variation also showcases that the network



Fig. 5: STF of DANCERS’ modules and for three physics
simulators: Robotsim (left), Mini-dancers (center) and Gazebo
(right)

simulator can be the slowest of the two simulators, with
the computational footprint of ns-3 overgrowing the one of
Robotsim. The increase of the STF with large numbers of
robots with Gazebo can be explained by the high CPU usage
during the experiment, which was monitored at 97%. Indeed,
in Gazebo each robot is controlled by an independent instance
of the PX4 Autopilot SITL, which is demanding in CPU
resources and slows the other processes.

B. Overhead

The overhead represents the computational cost of co-
simulation. It is caused by the unavoidable synchronization
messages exchange between the two simulators and usually
depends on the amount of shared data. For example, in
DANCERS, the overhead consists in a large part of the
serialization, deserialization, compression and decompression
of the Protobuf messages conveying information between the
two simulators. We define the overhead as the difference of
computation time between the co-simulator and the slowest of
the two simulators:

T∆
overhead = T∆ −max(T∆

phy, T
∆
net) (4)

where T∆
phy and T∆

net are the computation times for one iteration
by each simulator and T∆ is the total computation time for
one iteration. T∆

overhead is then the time when both simulators
are inactive during one iteration.

The overhead depends on two factors: the number of ex-
changed synchronization messages and their length. Small step
sizes (δphy and δnet) increase the number of synchronization
messages. The size of these messages depends on the number
of robots and on the size of the operator-defined payloads
(Pphy and Pnet). In Fig. 2, the overhead appears in dashed
red in an example where the network simulator is slower than
the physics simulator. The overhead STF (T∆

overhead/∆) is also
pictured in Fig. 5 in hatched red.

Better than the absolute value of the overhead cost, the user
might be interested in the share of the overhead in the total
computation cost (T∆

overhead/T
∆). For example with Gazebo, 32

robots and ∆ = δphy = δnet = 10ms, the overhead represents

on average 21% of the computation time for one iteration.
When the number of robots increases or the iteration length
decreases, the absolute value of the overhead grow but its ratio
relative to the total computation cost stays around 20%. We
deem this co-simulation cost acceptable, yet reducing it would
be a good trail for future work.

C. Correctness

A co-simulator is deemed correct if it does not introduce
unexpected errors, meaning that a co-simulation produces the
same results than standalone simulators, provided with the
same inputs. To assess the correctness of DANCERS, we
simulate a scenario where the network has no effect on the
robotic control and compare the results given by DANCERS
with the results of the independent simulators. The Mini-
Dancers physics simulator paired with ns-3 was used for this
evaluation.

In both cases, the UAVs’ positions are exactly the same: at
each iteration, the x, y and z values match perfectly. Similarly,
packet arrival times are identical across co-simulation and ns-
3 only. This consistency was achievable because both the
UAV model in Mini-Dancers and ns-3 provide simulation
reproductibility through pseudo-random number generators
seeded with the save value in both experimental setups. The
data generated for the correctness evaluation can be consulted
on DANCERS’ online repository [5].

Note that it would be tremendously difficult to prove the
correctness of DANCERS’ robot virtualization mode, because
it does not provide simulation reproducibility due to its inter-
actions with the ”real” world.

VI. FLOCKING CASE STUDY

This case study shows that DANCERS can simulate the
dependency between the robotic behaviors and their commu-
nication. Flocking is a well known method for multi-robot
navigation where each robot locally computes its command
based on the position and velocity of its neighbors. To select
these neighbors, most of the flocking literature rely on an
interaction range either arbitrarily defined [19] [20] or defined
by a more or less sophisticated communication models that
only partially represent the complex networking interactions
between robots [21] [22]. For example, effects of obstacle
shadowing on flocking have been studied in [17] and reducing
the communication costs of flocking has been studied in [23],
but never with a comprehensive network simulator, to the best
of our knowledge. DANCERS allows to study the flocking
problem with realistic network protocols.

1) Scenario: A fleet of 4-UAVs autonomously navigates
through an obstacle-filled environment. Each UAV, equipped
with a simulated lidar, executes the Vásárhelyi with Attraction
(VAT) flocking algorithm [17] to determine its trajectory.
UAVs are simulated in Gazebo using the PX4 autopilot, while
communications are handled in ns-3.

Each UAV receives perfect localization data (position and
velocity) from the physics simulator and broadcasts this state
via an ad-hoc Wi-Fi network using the UDP protocol at a



Fig. 6: Trajectories of 4 UAVs crossing an arrow-shaped
obstacle, moving from left to right. On the left, communi-
cations are simulated with ns-3 (DANCERS). On the right,
communications ignore obstacles, i.e., not realistic.

configurable State Broadcast Rate (SBR). Received neighbor
states are stored with a lifetime of τ seconds; neighbors are
disregarded if their latest state exceeds this time threshold.
UAVs are attracted to a global target placed infinitely far on
the opposite side of the environment.

2) Results: We show that signal attenuation caused by
obstacles drastically impacts the behavior of a communication-
based flocking. We compare the results of DANCERS against
standard Gazebo without network simulation, where com-
munication is near-instantaneous, and message loss is min-
imal. Fig. 6 shows the top-view trajectories of four robots
encountering an arrow-shaped obstacle designed to clearly
show the effect of obstacle shadowing on communication-
based flocking. When the fleet encounters the obstacle, it splits
into two groups with obstructed line-of-sight. With properly
simulated communication (i.e. with ns-3), the obstacle blocks
most of the messages, causing the subdivision of the fleet
in two subgroups after τ = 2 s. Each subgroup operates
independently until the end of the obstacle is reached, then
connectivity is regained and the fleet reunites. In contrast,
with plain Gazebo, communication remains unaffected by the
obstacle. The UAVs maintain mutual attraction, leading one
subgroup to turn back, rejoin the other and get around the
obstacle without fragmentation. A video of a similar scenario
is available online3.

In real life, an obstacle of this size would likely block radio
signals, leading to a temporary disconnection and the fleet
behavior simulated by DANCERS. Co-simulation enables such
network-realistic studies, that could not be produced without
a joint robotic and network simulation. Additional studies
using other physics simulators (Mini-Dancers, Robotsim) are
omitted here for brevity.

VII. CONCLUSION

We introduce DANCERS, a co-simulator able to inter-
connect any physics simulator with any network simulator,
with the goal of accelerating the study of communicating
multi-robot systems (MRS). Different modes covering differ-
ent simulation purposes in terms of realism and complexity
of computational load are provided. We show that the co-
simulator’s performances are comparable with the ones of

3https://youtu.be/FubicGPyB1E

the underlying simulators, the overhead imposed by syn-
chronization is acceptable and the simulation correctness is
preserved. Through a multi-UAV use case, we illustrate how
DANCERS can be used to accurately simulate cooperative
MRS navigating among obstacles.

DANCERS is open-source under the GPLv3 copy-left li-
censing. Its source code and the necessary code to repro-
duce the simulations presented in this work are available at
https://github.com/Chroma-CITI/DANCERS. We also provide
containerized installation (with Docker) and documentation.
In the future, we aim to extend the evaluation of DANCERS
and explore more elaborate multi-robot scenarios.

REFERENCES

[1] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on unmanned aerial
vehicle networks for civil applications: A communications viewpoint,”
IEEE Communications Surveys & Tutorials, 2016.

[2] M. Mozaffari et al., “A tutorial on UAVs for wireless networks:
Applications, challenges, and open problems,” IEEE Communications
Surveys & Tutorials, 2019.

[3] J. Collins et al., “A Review of Physics Simulators for Robotic Applica-
tions,” IEEE Access, 2021.

[4] M. H. Kabir et al., “Detail Comparison of Network Simulators,” Inter-
national Journal of Scientific & Engineering Research, no. 10, 2014.

[5] T. Balaguer, “DANCERS,” 2024. [Online]. Available: https://github.
com/Chroma-CITI/DANCERS

[6] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in
Modeling and tools for network simulation. Springer, 2010.

[7] C. Pinciroli et al., “ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems,” Swarm Intelligence, 2012.

[8] M. Kudelski, L. M. Gambardella, and G. A. Di Caro, “RoboNetSim: An
integrated framework for multi-robot and network simulation,” Robotics
and Autonomous Systems, 2013.

[9] B. Gerkey et al., “The player/stage project: Tools for multi-robot and
distributed sensor systems,” in ICAR, 2003.

[10] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IROS. IEEE, 2004.

[11] S. Acharya et al., “Cornet: A co-simulation middleware for robot
networks,” in COMSNETS, 2020.

[12] S. Acharya et al., “A co-simulation framework for communication and
control in autonomous multi-robot systems,” in IROS. IEEE, 2023.

[13] M. Calvo-Fullana et al., “ROS-NetSim: A framework for the integration
of robotic and network simulators,” IEEE Robotics and Automation
Letters, 2021.

[14] S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An Open Source
Synchronized UAV Network Simulator based on ns-3 and Ardupilot,”
in MSWIM. ACM, Oct. 2018.

[15] B. Zeigler, H. Praehofer, and T. Kim, Theory of Modeling and Simula-
tion. Elsevier Science, 2000.

[16] C. Virágh, “Robotsim multi-robot simulator,” 2018. [Online]. Available:
https://github.com/csviragh/robotsim

[17] A. Bonnefond, O. Simonin, and I. Guérin-Lassous, “Extension of
flocking models to environments with obstacles and degraded commu-
nications,” in IROS. IEEE, 2021.

[18] T. Baca et al., “The MRS UAV System: Pushing the Frontiers of
Reproducible Research, Real-world Deployment, and Education with
Autonomous Unmanned Aerial Vehicles,” Journal of Intelligent &
Robotic Systems, Apr. 2021.

[19] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms
and theory,” IEEE Transactions on Automatic Control, 2006.

[20] G. Vásárhelyi et al., “Optimized flocking of autonomous drones in
confined environments,” Science Robotics, 2018.

[21] H. Li et al., “Flocking of mobile agents using a new interaction model:
A cyber-physical perspective,” IEEE Access, 2017.

[22] T. Ibuki et al., “Optimization-based distributed flocking control for
multiple rigid bodies,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, 2020.

[23] M. M. Zavlanos and G. J. Pappas, “Distributed connectivity control of
mobile networks,” IEEE Transactions on Robotics, vol. 24, no. 6, 2008.

https://youtu.be/FubicGPyB1E
https://github.com/Chroma-CITI/DANCERS
https://github.com/Chroma-CITI/DANCERS
https://github.com/Chroma-CITI/DANCERS
https://github.com/csviragh/robotsim

	Introduction
	Related work on (co-)simulators
	The DANCERS architecture
	Time synchronization
	Information Exchange
	Simulating obstacles in DANCERS

	Connectors for different simulators and virtualization mode
	Implemented Connectors
	ns-3
	Robotsim
	Mini-dancers
	Gazebo

	Network virtualization mode

	DANCERS co-simulator evaluation
	Computational performance
	Overhead
	Correctness

	Flocking case study
	Scenario
	Results


	Conclusion
	References

