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Abstract— This paper introduces a novel distributed ap-
proach for forming UAV-based multi-hop relay networks by
adapting traditional flocking models to create relay chains be-
tween remote points. Our method modifies the standard flocking
paradigm by incorporating dynamic agent roles, allowing UAVs
to self-organize based solely on local state and neighbor infor-
mation, and integrates networking information such as routing
decisions directly into mobility control. A side contribution is
the introduction of a Line-of-Sight (LOS) conservation force,
which mitigates communication failures due to obstacles and is
easily adaptable to the flocking model. The proposed algorithm
is evaluated using a joint robotics and network co-simulator that
combines realistic multi-rotor physics with ns-3-based network
simulations. Simulation results across diverse environments and
varying mission complexities demonstrate that our approach
effectively maintains connectivity, enhances Quality of Service
(QoS), and scales robustly, thereby bridging the gap between
robotic control and aerial wireless network design.

I. INTRODUCTION

Flying Ad-hoc Networks (FANETs) technology has ad-
vanced significantly in recent years, trying to leverage the
great aerial mobility and communication capabilities of
UAVs to solve civil and military challenges like infrastructure
inspection, environment exploration or search-and-rescue.
This field benefits from advances in robot design, ad-hoc
networks and multi-agent navigation.

Among the numerous envisioned applications of FANETs,
target monitoring recently drew a lot of attention. For
example, a search-and-rescue team could leverage multi-
UAV systems to get a video and sound feedback of a
victim in difficult to reach areas. This kind of application
falls under the broader category of robot target monitoring,
where a group of autonomous robots must provide real-time
connectivity to one or multiple remote sensing areas. Most
of the time, UAVs have to fly close to the ground, where
the environment is cluttered with obstacles that can generate
collision and affect the communication quality.

It is generally admitted that UAVs must collaborate (and,
consequently, communicate) to fulfill such mission, to avoid
collision but also to exchange mission information to orga-
nize more efficiently toward their common goal.

In this work, we propose a navigation algorithm that
creates a UAV chain for robotic target monitoring. It is
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3Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004,

Nantes, FRANCE

inspired from the flocking principles and embeds network
information, in particular from the used routing algorithm,
to make sure that the communication quality is good.

We use our joint robotic and network co-simulator,
DANCERS, to evaluate our algorithm with both realistic
multi-rotor dynamics and realistic network protocols. The
main contributions of this work are:

• A new flocking interaction providing Line of Sight
conservation among obstacles;

• An original multi-UAV relay chain algorithm based on
flocking with network-informed roles;

• A simulation framework enabling the joint study of
navigation and routing algorithms.

In Sec. II, the main research background required for
the current work is presented. In Sec. III, the problem
is explained and the notation introduced. In Sec. IV, our
solution based on flocking is presented. Simulation results
and analysis of our algorithm are given in Sec. V. We
conclude and present further work in Sec. VI.

II. RELATED WORK

A. Relay chain network creation

Over the past decades, researchers have investigated UAV-
based multi-hop relay networks from various perspectives
(see Table I). Key challenges include the choice between
centralized and distributed architectures, navigating environ-
mental obstacles, enforcing Quality of Service (QoS), and
managing multiple relay chains.

Zavlanos et al. [1] proposed a graph-based control method
enabling a group of mobile robots to ”stretch” while main-
taining a specified level of k-connectivity, as part of their
foundational work on mobile robot connectivity control.
However, this approach requires global graph information,
which complicates distributed implementation.

In [2], relay chain formation is studied in the particular
context of tunnel exploration. In this scenario, UAVs are
constrained to the tunnel centerline, reducing navigation to
a simple forward/backward decision. The optimal QoS relay
chain is achieved by moving each UAV toward its weakest
quality link, i.e., the one with the lowest Signal-to-Noise
Ratio (SNR), thereby equalizing link quality.

The relay chain problem has also been formulated as an
optimization challenge. Olsson et al. [3] present a centralized
algorithm based on space discretization to identify a set of
Pareto-optimal solutions. Their method minimizes commu-
nication cost and maximizes surveillance capability, but is
computationally intensive for relay trees. Similarly, Yan et



al. [4] employ optimization techniques that use SNR-based
objective functions to minimize the Bit Error Rate (BER)
relative to router positions. In [5], Mox et al. formulate an
optimization problem encapsulating both routing and multi-
robot control, and prove its efficiency through simulations
and field experiments.

Hayat et al. [6] introduce a ”Simultaneous Inform and
Connect” (SIC) strategy that balances the time required to
transmit the first bit from a sensed area to the base station
(BS) with the time needed to establish a real-time multi-hop
relay network. Their method positions routers by selecting
an appropriate number of relays and distributing them evenly
along the straight line between the sensed area and the BS.

Most existing studies, summarized in Table I, are theoret-
ical or tailored to specific agent types, numbers, or environ-
ments. Few address the joint challenges of robotic control
and wireless networks constraints, even if these two fields
are closely interconnected in cooperative FANETs. This gap
motivates our development of a flexible, robust, scalable, and
adaptive solution for UAV relay network creation.

B. Flocking principles

Flocking, swarming or schooling are forms of emergent
collective behaviors, exhibited by groups of animals in the
wild, that is believed to emerge only from local rules of
interaction between the individuals. Reynolds initially mod-
eled flocking using three heuristic rules: cohesion, alignment,
and separation [7]. These principles have since been widely
studied and adapted for multi-agent systems. In the con-
text of Multi-Robot Systems (MRS), flocking offers several
advantages: it is fully distributed, highly scalable, com-
putationally and communicatively efficient, functions with
only relative localization, adapts to unforeseen obstacles,
and naturally accommodates agents joining or leaving the
formation. Flocking has also proven to be more than a
theoretical model but also usable for real-life deployment
of UAVs, as demonstrated in [8], [9].

In [10], the authors integrated flocking rules to reduce
route changes within the Ad-hoc On-Demand Distance Vec-
tor (AODV) routing protocol. While each UAV typically
follows an individual roadmap, those forming an active
transmission path adopt flocking behaviors. This approach
leverages the inherent cohesion of flocking to stabilize and
improve the performance of the routing protocol.

C. Routing inspiration

For effective end-to-end communication, UAVs require
robust routing protocols. Routing in Flying Ad-hoc Networks
(FANETs) has been studied for several decades, yielding
numerous protocols. However, comparing these protocols
is challenging due to diverse implementations across sim-
ulators (e.g., ns-3, OMNET++) and the scarcity of open-
source solutions. Usually, widely recognized protocols are
standardized by the Internet Engineering Task Force (IETF)
through official Request For Comments (RFC) documents.
The four standardized Mobile Ad-hoc Network (MANET)
routing protocols that can be adapted for FANETs are OLSR

(RFC 3626), OLSRv2 (RFC 7181), AODV (RFC 3561), and
DSR (RFC 4728). With the exception of OLSRv2, these
protocols have been rigorously implemented in ns-3 and can
thus be compared with good confidence.

The complementary strengths of flocking and established
routing protocols motivate the development of a routing-
aware flocking model. Such a model integrates networking
and mobility aspects to enhance the performance and relia-
bility of cooperative multi-UAV systems.

III. PROBLEM DEFINITION AND KEY PERFORMANCE
INDICATORS

A. Assumptions and notations

Consider a homogeneous fleet of n cooperative UAVs
equipped with wireless communication capabilities. U =
{u1, . . . , un} is the set of UAVs. We suppose that the UAVs
have perception capabilities allowing them to access the
relative position of the other UAVs within a range Rp.
Furthermore, the environment is cluttered with unknown
obstacles represented by the region O ⊆ R3. The UAVs
can detect obstacles within a range Rd and a field of view
of 360°.

Additionally, consider that m target areas denoted T =
{τ1, . . . , τm}, with known positions p(τi), are disseminated
in the environment. There is also one base-station (BS)
denoted δ with a known position p(δ). The starting point
of the UAV fleet is near the BS. When a UAV ui is assigned
to a target τ or to the BS δ, it is respectfully labelled uτi
and uδi . The UAVs can generate ”mission data” and send it
to the BS at any moment, but the ”mission data” has value
only if it has been produced within a target area.

B. Mission and chain definition

We consider that a group of UAVs forms a ”chain” when
a throughput and delay condition is achieved between a
UAV positioned in a target area and another UAV positioned
near the BS. In most cases, the target areas are not within
the one-hop communication range of the BS, forcing the
UAV fleet to create a multi-hop relay network. To do so,
they must autonomously navigate through an environment
cluttered with unknown obstacles, using only their perception
and communication capabilities, and cooperate to form the
chain. In Fig. 1, the chain transporting the mission data is
illustrated by red arrows.

C. Performance criteria

The mission success is evaluated by the three following
key performance indicators (KPI). The UAV fleet must reach
their targets as fast as possible, and be able to transmit data
from the target locations to the BS with a good throughput
and a limited delay.

• Deployment time:

ψ = min
t∈R+

(t) :

{
∀τ ∈ T, ∃u ∈ U : ∥p(u, t)− p(τ)∥ ≤ Rτ

∃u ∈ U : ∥p(u, t)− p(δ)∥ ≤ Rδ

where Rτ and Rδ are the accepted radius around the
target locations.



Ref. Year Title Architecture Obstacles QoS-aware Multi-targets Relay number

[1] 2008 Distributed Connectivity Control of Mobile
Networks Centralized No No No 12

[3] 2010 Generating UAV communication networks for
monitoring and surveillance Centralized Yes Yes Yes 26

[4] 2010 Robotic router formation - A bit error rate approach Centralized Yes Yes No [4-6]

[11] 2012 Optimizing Cascaded Chains of Unmanned Aircraft
Acting as Communication Relays Distributed No Locally No 2

[6] 2020 Multi-objective drone path planning for search and
rescue with quality-of-service requirements Distributed No Yes No [4 - 12]

[5] 2020 Mobile Wireless Network Infrastructure on Demand Centralized No Yes No [3 - 9]

[12] 2020 A cost-efficient elastic UAV relay network
construction method with guaranteed QoS Distributed No No No 4

[2] 2021 Signal-Based Self-Organization of a Chain of UAVs
for Subterranean Exploration Distributed Yes Yes No [2 - 5]

[13] 2023 UAV relay network deployment through the area
with barriers Distributed Yes No No 6

Our solution 2025 UAV Chain Network Creation in Complex
Environment with Flocking Rules and Routing Data Distributed Yes Yes Yes [4 - 20]

TABLE I
AUTONOMOUS RELAY CHAIN CREATION STUDIES

Data route
Potential neighbor
Leader UAV
Base-station UAV
Relay UAV
Support UAV
External UAV
Isolated UAV

Fig. 1. Role-based flocking model for relay chain creation

• Cumulated throughput of mission flows:

ϕ =


∑
τ∈T

ϕτ,δ if ϕτ,δ ≥ ϕmin for all τ ∈ T,

0 otherwise.

where ϕτ,δ denotes the achieved throughput between
nodes uτ and uδ for the mission data-flow, and ϕmin is
the minimum acceptable throughput.

• Average delay:

D =


1

m

∑
τ∈T

Dτ,δ if Dτ,δ ≤ Dmin for all τ ∈ T,

0 otherwise.

where Dτ,δ denotes the average end-to-end delay of the
mission data-flow between nodes uτ and uδ , and Dmin

is the minimal delay that can be accepted.

IV. A SOLUTION BASED ON FLOCKING

A. Flocking model

In flocking, each agent computes its desired velocity
by combining forces derived from local interactions with
its neighbors. Our work builds on the “Vásárhelyi with

Attraction” (VAT) model [14] which is an extension of [9],
selected for its robust performance in environments with
obstacles and degraded communications. In [14], the desired
velocity vector of an agent ui is computed as follows:

ṽVAT
i =

vi

∥vi∥
vflock + vrep

i + vatt
i + vali

i +
∑
o∈O

vobst
i,o (1)

where ṽVAT
i is the final desired velocity, vi is its current

velocity, vflock is the preferred speed of the flock, vrep
i , vatt

i

and vali
i are the sums of the contributions of the neighbors,

respectively for the repulsion, attraction and alignment, and
vobst
i,o is the interaction term of the obstacle o. These flocking

forces are represented in Fig. 2.
In this model, the attraction and repulsion forces are

implemented using simple half-spring functions, which offers
a good balance between simplicity and effectiveness [9]. The
alignment equation is more complex. To be able to deal
with both large velocity differences and limited acceleration,
the authors introduce an ideal braking curve to bound the
velocity difference between two agents to a value that
depends on the distance between the agents. For obstacle
avoidance, a virtual agent is positioned at the closest point
on an obstacle, with its velocity vector directed normal to the
obstacle’s surface and pointing outward. The resulting force
resembles the alignment force, but it is applied to this virtual
agent. For the sake of conciseness, the reader is referred to
[14] and [9] for the details of the equations. In our flocking
model, the auto-propulsion term vi

∥vi∥vflock is deactivated.

B. Stretching the flocking

Our main proposition is a modified flocking model able
to stretch itself without loss of connectivity, creating a chain
of relays between two remote positions. Traditional flocking
models naturally aggregate agents and align their velocities,
which is quite the opposite of a chain formation. On the
contrary, our approach aims to linearly expand the group.

To reshape the typically spherical flock, we designate
certain agents as leaders that ”pull” the formation in a desired



obstacle

Fig. 2. Flocking forces in the Vásárhelyi with
attraction (VAT) model. The red arrow is the attraction
force, the green arrow is the repulsion force. The violet
arrow is the velocity alignment. The orange arrow is
the repulsion force of the obstacle.

Leader role

Router role

Support role

Elected by the
operator

Member of a route
to the base-station

Has Router
neighbors

Next hop

Previous hop(s)
+ Next hop

All in range

ConditionRole Neighbors filter Flocking model

P
rio

rit
y 

or
de

r

External role
Has no Router

neighbors
All in range

Dynamic

Fixed

Fig. 3. Flocking roles with role selection feature, associated neighbor filter and modified flocking
model. For the Support role, ṽVAT

2BR means that the complete VAT model is activated for the two
closest Router neighbors, and v
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others means that repulsion is activated with all other neighbors.

direction. With another UAV fixed at the BS, the group
naturally stretches. However, tuning the target force exerted
by the leaders is challenging, as it depends on factors such as
neighborhood size and inter-agent interactions. Inappropriate
tuning may cause leader disconnections or lead to deadlocks,
where the attraction toward the target is neutralized by the
cohesive forces from neighboring agents.

We observe that when a leader is connected to only one
neighbor, it gains increased freedom to move toward its
target, provided that the target force is properly tuned. More
broadly, selectively ”breaking” certain flocking links — by
filtering neighborhoods — can facilitate effective stretching.

Importantly, not all links are equally expendable. The
communication route defined by the routing algorithm must
be maintained and reinforced, as it is critical for data
transmission and overall QoS. By incorporating network
information into the flocking model, our approach achieves
two key objectives:

• Enhance the mobility of leaders by selectively breaking
non-critical flocking links, allowing them to navigate
toward their targets.

• Improve QoS by incorporating UAVs in the chain, to
reinforce the links that actually transmit important data.

C. Modified flocking model based on roles

Our modified flocking model is based on dynamic agent
roles. Each UAV determines its role using only its own state
and information shared by its neighbors. Fig. 1 and Fig. 3
illustrate the different roles, the role selection process, the
filtering of flocking neighbors, and the associated modifica-
tions to the flocking model.

The proposed flocking model works as follows: each role
corresponds to a slightly modified version of the flocking
model presented in Eq. 1. Specifically, the neighbors con-
sidered for the flocking computations are filtered, and some
forces are activated / deactivated. When a UAV self-assigns
a role, it follows the associated flocking model. The roles
are designed so that Leaders move toward their designated
target areas, with attraction and alignment forces ensuring
that nearby UAVs follow their motion. A stream of data is
continuously sent between each leader and the BS, allowing
the non-leader UAVs to know if they should take the role of

Router. The flocking model of the Router role releases some
cohesive constraints letting the chains expand. The roles
and associated flocking model modifications are presented
in details hereafter.

1) Leader role: The most important role is probably
the Leaders. Before the start of the mission, the operator
arbitrarily associates a UAV ui to a target τ , creating the
leader uτi . Leaders have a supplementary attractive force vtar

i

toward their target area:

vtar
i =


vtar

max ∗
rτi

∥rτi∥
if Rτ ≤ ∥rτi∥,

vtar
max

Rτ
∗ rτi
∥rτi∥

otherwise.
(2)

where vtar
max ∈ R is a flocking parameter controlling the force

of attraction toward the target and rτi = p(τ) − p(uτi ) is
the vector between the Leader UAV uτi and its associated
target τ . Leader UAVs continuously transmit mission data to
keep an active route toward the BS. Leaders only consider
one neighbor for flocking: the next hop toward the BS as
computed by the routing algorithm. They can be seen as
being the ”first router” of their chain. The Leader role could
also be dynamically assigned, based on distributed task-
assignment methods, but this is a field of research in itself,
and we did not focus on this problem.

2) Router role: Router UAVs form the communication
chains between Leaders and the BS. A Router self-elects
when its routing module takes the decision to forward a
mission packet. Routers reduce their flocking neighborhood
to the upstream and downstream UAVs: the sender of the
forwarded mission packet and the next hop toward the BS,
as computed by the routing algorithm. When multiple target
areas are considered, a Router can have more than one
”upstream” neighbor, but it has only one ”downstream”
neighbor (as long as multi-path routing is not considered).
Router UAVs activate all the flocking forces with its flocking
neighbors, and add a new force vlos

i,o, that prevents the link
with their neighbors to be suddenly blocked by an obstacle
(see Subsec. IV-D).

3) Support role: The UAVs that do not actively route mis-
sion data are called Supports. They provide secondary routes
in case a router UAV fails, and explore the space around the



established chain for a path with a better QoS. Their modified
flocking model is the following: they activate the attraction
and the alignment forces only with their two closest Router
neighbor (this has the effect of drawing Support UAVs
between a pair of Router UAVs), but keep the repulsion force
with all of their neighbors for collision avoidance. Support
UAVs can know the role of their neighbors because each
UAV broadcasts its role periodically (see Subsec. V-A).

4) External role: If a UAV has zero Router neighbor, it is
considered as External UAVs. This role appears when UAVs
are far from the communication chains, or when there is no
route between a Leader and the BS. In this case all the UAVs
have the External role (there is no Router). The External role
does not change the flocking model.

D. Avoiding communication failures due to Obstacles

Obstacles can block the line of sight (LOS) between
UAVs, causing disconnections in multi-hop networks. In
point-to-point communication, an obstacle between two
Routers can result in a broken link from the Leader to the
BS, forcing the routing algorithm to detect the failure and
recompute a route — a process that can take several seconds
and adversely affect the end-to-end packet delivery ratio.

To mitigate these issues, we introduce a new flocking
interaction term, vlos

i , activated only between two Router
UAVs, which helps maintain LOS. UAVs can detect nearby
obstacles using sensors (e.g., LIDAR) and identify neighbor
UAVs via relative sensing. Based on this information, each
Router UAV ui computes a ”LOS conservation force” using
the following procedure, illustrated in Fig. 4:

For each Router neighbor uj and for each obstacle ok,
ui first computes the boundaries of an inflated version of
the obstacle, o∗k (e.g., via an homothetic transformation). If
the straight line L = (p(ui), p(uj)) intersects o∗k, the UAV
determines the nearest parallel line L′ that does not intersect
the inflated obstacle. The translation vector d⃗ between L and
L′ then indicates the direction of the adjustment needed to
restore or preserve LOS. The resulting LOS conservation
force applied to ui for its link with uj intersecting the inflated
obstacle o∗k has a direction d⃗ and a magnitude proportional
to the size of the intersection.

vlos
i,j,o = plos∥[p(ui), p(uj)] ∩ o∗k∥d⃗ (3)

where plos is a coefficient.
This innovative force proved efficient to solve LOS ob-

struction in simple environment, such as obstacles relatively
large compared to the inter-agent distance (see Fig. 5). It is
fully distributed and does not break the principles of flocking.
However, its behavior in complex environments should be
studied, for example environments with small and numerous
obstacles.

The final flocking equation applied to all the UAVs of the
fleet is then:

ṽd
i = ṽVAT

i + vtar
i +

∑
o∈O

vlos
i,o (4)

Obstacle
Obstacle

Fig. 4. LOS conservation force. The red lines illustrate a LIDAR sensor.

Fig. 5. Effect of an obstacle between the target area and the base-station,
with (bottom) and without (top) the LOS conservation force. The pink area
represents the inflated obstacle.

where ṽVAT
i is the same as in [14] and Eq. 1 without the

auto-propulsion term. Remember that all the components of
Eq. 4 are sums of the contributions of the flocking neighbors
of the UAV ui, depending on its role, and that some of the
components are activated only for a specific role, or between
two roles (for example, a Support UAV activates vatt

i only
with its two closest Router neighbors).

Finally, the desired velocity is bounded to a maximum
velocity vmax:

vd
i =

ṽd
i

∥ṽd
i ∥

min{∥ṽd
i ∥, vmax} (5)

V. EVALUATION AND RESULTS ANALYSIS

To evaluate our flocking algorithm, we use DANCERS, a
joint robotics and network co-simulator [15]. UAV dynamics
are modeled using the realistic multi-rotor framework by the
MRS Group at the Czech Technical University [16], while
network communications are simulated via ns-3. We evaluate
our approach in two scenarios of varying complexity.

A. Simulated packet exchange for neighborhood definition

Traditional flocking studies often define an agent’s neigh-
borhood using simple interaction ranges, such as disk-
shaped areas [9], [17] or communication models with varying
degrees of realism [18], [19]. However, these approaches
typically overlook environmental effects (such as obstacle-
induced shadowing) and complex networking effects (such
as wireless channel congestion).



In our work, we define each agent’s neighborhood through
realistic packet exchange within a simulated wireless net-
work. Each UAV runs a “heartbeat” application that period-
ically (with period Th) broadcasts a 64-byte UDP/IP packet
containing the robot’s ID, position, velocity, and current
flocking role. These heartbeat messages are locally broadcast
and not forwarded, ensuring that only UAVs within the
sender’s communication range receive them.

An agent considers another UAV as a potential neighbor
if it has received its heartbeat message within the past ∆h

seconds (e.g., ∆h = 2s). Potential neighbors are maintained
in a list ordered by reception power or estimated distance.

B. Simulation settings
Our simulations use Wi-Fi communication under the

802.11n standard operating at 2.4 GHz, with MCS1 7,
a 20 MHz bandwidth, and 800 ns guard interval, yield-
ing a theoretical data rate of 65 Mbps. We employ the
NistErrorRateModel for error modeling alongside the
3GPP V2V Urban propagation model.

Routing plays a central role in our flocking model. In fact,
having a QoS-aware routing algorithm is critical for success-
ful relay chain formation using our relay chain algorithm. If
the routing algorithm solely relies on hop count, Leaders
may form long, low-quality links with the BS, leading to
disconnections. Unfortunately, QoS-aware MANET routing
protocols are not yet implemented in ns-3. To evaluate our
algorithm nonetheless, we implement a routing algorithm
based on inter-UAV distance, close in principles to OLSRv2.

The physics of the UAVs is computed using the realistic
multi-rotor model developed by the MRS Group at Czech
Technical University [16]. It uses an ODE solver for UAV
dynamics and a multi-rotor controller that supports various
levels of control (e.g., position, velocity, attitude + thrust).
To keep simulations computationally lightweight, we do not
use a full physics engine. Instead, UAVs are modeled as 50
cm spheres to detect collisions.

Obstacles are represented as axis-aligned bounding boxes,
a constraint of the ns-3 buildings module. These obstacles are
randomly generated based on a given area, obstacle count,
and the mean and standard deviation of their radii.

In all scenarios presented, the UAV fleet takes off from a
location near the base station.

C. Scenario 1: Single target relay chain
The first scenario involves a single target area and a group

of 6 UAVs that uses Wi-Fi to communicate. The primary
objectives are to demonstrate that our algorithm can:

1) adapt the number of routers depending on the distance
between the target and the BS,

2) evenly distribute the routers along a straight line be-
tween the target and the BS,

3) avoid collisions among UAVs and with obstacles.
Note that it is proven in [2] that under the hypothesis of the
two ray propagation model, equally distributing the routers
along a straight line is the optimal router placement.

1Modulation and Coding Scheme

Fig. 6. On top left, Router link length in an obstacle-free environment. On
bottom left, received signal power in cluttered environments. On the right,
the evolution of the number of Router UAVs.

Fig. 7. On the left, cumulated throughput request and received at the BS
(ϕ) where each Leader generates 0.4 Mbps of mission data. On the right,
end-to-end delay of the mission flow.

We record both the inter-router distances and the received
signal power between pairs of Router UAVs (the chain links).
The first key finding is that these metrics converge over
time. This convergence is depicted in Fig. 6 as time series
with min-max bands. In the top-left panel, link lengths in
an obstacle-free environment are shown for various target
positions (the BS is fixed at p(δ) = (0, 0, 10)). Once the
Leader UAV reaches the target area (ψ = 93 seconds for
p(τ) = (200, 200, 10)), the average link length stabilizes.
In the bottom-left panel, the target is fixed at p(τ) =
(200, 200, 10) for three different obstacles environments.
The received signal power between pairs of Router UAVs
similarly converges.

Additionally, the algorithm dynamically adjusts the num-
ber of relays: by directly leveraging the routing algorithm’s
results to elect chain members, the number of Router UAVs
automatically adapts as long as sufficient Support UAVs are
available. As illustrated in the top-right panel of Fig. 6, a
target at p(τ) = (50, 50, 10) requires only a single Router
(resulting in a two-hop chain). Importantly, no collisions
were recorded in any of the scenarios.

D. Scenario 2: Relay tree with dynamic targets

In this scenario, the UAV fleet is challenged with a
dynamic environment featuring multiple target areas and
the appearance of new targets during the experiment. The
primary goal is to demonstrate the scalability and flexibility
of our approach.



Fig. 8. Trajectories of a fleet of 20 UAVs forming a relay tree with multiple targets. New targets appear at t=50s and t=150s. The data chains are
represented in red dashed lines. The ”tail” trajectories of the UAVs are represented over 50s.

Initially, 20 UAVs are deployed to establish communica-
tion chains with 5 target areas. At t=50s and t=150s, two
additional target areas emerge, prompting the fleet to reor-
ganize. Fig. 8 illustrates the environment, UAV trajectories,
and the corresponding Router links.

Qualitative results indicate that our flocking model effec-
tively disperses agents to form a relay tree, ensuring that
each Leader reaches its assigned target while maintaining
continuous communication with the BS. The first of the
initial five targets is reached at t=34s, the sixth target at
t=69s (19s after emerging), and the final target of the initial
set at t=121s. The seventh target is reached at t=ψ=208s.
Quantitatively, once all targets are reached, the cumulative
throughput stabilizes at ϕ = 2.63 Mbps, representing 94% of
the total mission flow generated by the Leaders (see Fig. 7).
The average packet delay is low, averaging D = 9.2ms, with
occasional spikes up to 3 s during abrupt route changes.

Overall, this scenario demonstrates that our solution can
effectively manage large fleets of autonomous UAVs in
obstacle-rich unknown environments and dynamically adapt
to the introduction of new target areas, all while maintaining
robust QoS in terms of throughput and delay.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel UAV-based relay network
formation strategy that leverages an enhanced flocking model
integrating dynamic role assignment, routing-aware neighbor
selection, and a novel LOS conservation force. Our approach
enables the formation of robust relay chains that maintain
connectivity, evenly distribute agents along the communica-
tion path, and prevent collisions. Simulation results across
scenarios of various complexity demonstrate the method’s
effectiveness in achieving stable throughput and low delay,
even in challenging environments.

Future work will address several key directions. We plan to
analyze and manage network congestion to further enhance
Quality of Service, and to adapt the model for multi-path
routing protocols, thereby improving resilience and load
balancing. Improving the behavior of the Support role to
promote spatial diversity would be beneficial. Extending the
approach to heterogeneous fleets and including random UAV
failures in simulation would increase operational flexibility.

Finally, real-world experiments should be pursued to validate
our findings and tackle practical deployment challenges.
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